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We look at two classes of contained flow : swirling flow and buoyancy-driven flow. We 
note that the strong links between these arise from the way in which vorticity is 
generated and propagated within each. We take advantage of this shared behaviour to 
investigate the structure of steady-state solutions of the governing equations. First, we 
look at flows with a small but finite viscosity. Here we find that, Batchelor regions 
apart, the steady state for each type of flow must consist of a quiescent stratified core, 
bounded by high-speed wall jets. (In the case of swirling flow, this is a radial 
stratification of angular momentum.) We then give a general, if approximate, method 
for finding these steady-state flow fields. This employs a momentum-integral technique 
for handling the boundary layers. The resulting predictions compare favourably with 
numerical experiments. Finally, we address the problem of inviscid steady states, where 
there is a well-known class of steady solutions, but where the question of the stability 
of these solutions remains unresolved. Starting with swirling flow, we use an energy 
minimization technique to show that stable solutions of arbitrary net azimuthal 
vorticity do indeed exist. However, the analogy with buoyancy-driven flow suggests 
that these solutions are all of a degenerate, stratified form. If this is so, then the 
energy minimization technique, which conserves vortical invariants, may mimic the 
stratification of temperature or angular momentum in a turbulent flow. 

1. Introduction 
In this paper, we consider two distinct classes of motion: swirling flow and 

buoyancy-driven flow. Individually, each of these has been studied extensively, and a 
number of quite profound properties have emerged. Both may sustain internal wave 
motion, and both have a predisposition towards two-dimensionality. In the case of 
swirling flow, this manifests itself in the existence of Taylor-Proudman columns. The 
qualitative analogy between the two classes of flow has long been recognized, going 
back at least as far as Rayleigh’s studies of centrifugal instability. 

We are interested here in axisymmetric, contained flows. There is a considerable 
body of experimental evidence to suggest that, in the steady state, such flows tend to 
a state of stratification throughout most of the flow field. That is, in a swirling flow, 
the azimuthal velocity, uo, is a function only of the radial coordinate, r, while the 
temperature in a buoyancy-driven flow is a function only of the vertical position, z. (See 
Davidson 1992 for examples of the former, and Elder 1965 and Vives & Perry 1989 for 
examples of the latter.) However, there are many notable flows where this is not the 
case. Perhaps the most important exceptions are the Batchelor-like flows, where 
temperature, vorticity and angular momentum are all uniform (see Batchelor 1956). In 
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fact, there are even flows that appear to be neither stratified nor of the Batchelor type, 
but have a more complex form. 

In this paper, we address two distinct, but related questions. Firstly, what is the 
formal nature of the analogy between swirling and buoyancy-driven flows, and can we 
use this to extend our knowledge of either? Secondly, under exactly what conditions 
will stratification of these flows occur, and can we use this knowledge to give an 
approximate solution for the flow field? 

We start, in $2, by examining the mechanisms by which vorticity is generated and 
propagated in swirling and buoyant fluids. It turns out that the mechanisms are very 
similar, and that this underpins the more general links between the two topics. In $3, 
we illustrate these links by reviewing briefly the established analogies between swirling 
and buoyant flows. In particular, we look at thermal plumes and internal waves, and 
their counterparts in rotating fluids. 

We turn next to the main focus of the paper, which is the structure of steady-state 
flows. Here we are interested in flows with a high Reynolds number and with closed 
streamlines. The fluid is taken as (almost) incompressible, with the Boussinesq 
approximation being used for the buoyancy force. 

We start by examining steady-state flows with a small but finite viscosity. We show 
that, Batchelor regions apart, any steady state must consist of an inviscid, quiescent, 
stratified core, bounded by high-speed wall jets. The stratification is of angular 
momentum in the case of swirling flow (Taylor-Proudman theorem), and of 
temperature in the case of buoyancy-driven flow. In each case, all of the streamlines 
pass through both the boundary layer and the core. In addition, stratification of the 
core represents a minimum energy state. 

Having established the general structure of these steady states, we go on to develop 
approximate methods for predicting the temperature and velocity fields. Following 
Greenspan (1 968), the wall jets are handled using the momentum-integral technique, 
and the core and wall-jet flows are linked via continuity of mass. We illustrate this 
method with two particular examples: forced swirl in a cone, and buoyancy-driven 
flow in a cylinder. In each case, the predictions are compared with numerical 
experiments. 

Finally, we address the question of inviscid steady states. Here we use the energy 
minimization technique of Vallis, Carnevale & Young (1989) to examine the stability 
of a well-known class of steady solutions. However, as Batchelor (1956) pointed out, 
such flows, if they exist, will not last for long. In reality, diffusion between closed 
streamlines will eventually eradicate any gradients in temperature, angular momentum 
or vorticity. Consequently, one must be very cautious in attributing physical 
significance to these flows. 

We aim to achieve two goals with this paper. One is to show that there is a strong 
commonality between swirling and buoyancy-driven flows, and that given a solution 
of one type, we can (often) construct a flow of the other. Secondly, we aim to show that 
steady-state solutions of these flows (at high Reynolds numbers) are inevitably 
stratified, and we can use this knowledge to obtain approximate solutions for the flow 
fields. 

2. The governing equations of motion 
We shall restrict ourselves to axisymmetric flows, and adopt a cylindrical polar 

coordinate system (Y, 8, z ) ,  with z pointing vertically downward. It is useful to separate 
the velocity u and vorticity o into azimuthal (0) and poloidal (Y, z )  components. 
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Consider first a swirling, recirculating flow. The velocity field can be written in the 

(1) 
form 

u = up+u,  = Vx[ ($ / r ) i? , ]+ ( r / r )&, .  

Here $ is the Stokes streamfunction and r is the angular momentum, tdgr. The 
streamfunction is related to the vorticity component, (4, by the operator V:, defined 
by 

Next, the azimuthal and poloidal components of the Navier-Stokes equations can be 
reduced to transport equations for r and (4. If v is the viscosity, these are, 

Dr /Dt  = W V Z , ~ ,  (3) 

Between them, the two scalars r and 6+ completely describe the instantaneous state of 
the flow field. 

Now consider the analogous, two-dimensional, buoyancy-driven flow. This consists 
of a poloidal velocity field up(r, z) ,  in conjunction with a temperature field T(r, z). We 
shall use the Boussinesq approximation, in which up remains solenoidal. In this case, 
the equation of motion is 

Du 
Dt 
- = - V ( P / p )  -gpTi?= + vV'U, (5) 

where p is the expansion coefficient, 

p = - - -  1 dP 
p dT' 

As with the swirling flow, we may write (5) as a transport equation for (do. If a is the 
thermal diffusivity, we have two governing equations : 

DT/Dt = aV2T, (6) 

There is a similarity in the structure of equations (6)  and (7), and (3) and (4). In the 
buoyancy-driven flow, the source of recirculation is a radial temperature gradient 
(Bjerkne's theorem), while for a centrifugal flow, it is the axial gradient in swirl. In both 
cases, there is a mutual interaction between the recirculation, up, and r or T. 

The source term on the right-hand side of (4) may be rewritten in the form 
V x (ug x wp), showing that the physical origin of this term is a spiralling of the poloidal 
vortex lines by ug. That is, any axial gradient in r causes it to corkscrew its own vortex 
lines, sweeping out a component of wg (see Davidson 1989). The source term on the 
right-hand side of (7) is physically more obvious. Any radially orientated element of 
fluid which is hotter at its outer radius than its inner radius will experience a net torque, 
rotating the element about a horizontal axis. 

There are a number of instances where we will choose to neglect diffusion, and in this 
case the governing equations take particularly simple forms : 
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swirling flow DT/Dt = 0, 

buoyancy-driven flow DT/Dt = 0, 

Note that, if we replace g2z by aJictitious radial gravity, gr-3~,,, then the two sets of 
equations become identical. That is, there is an exact correspondence between swirling 
flow and an (unphysical) r-3 radial gravity. This, in turn, suggests a qualitative analogy 
between physical (g&,-driven) buoyancy and swirl. In fact, it is readily shown that 
equations (8) and (9), and (10) and (1 1) are identical provided we confine attention to 
a narrow annulus (surrounding r = r,) within which gradients in r are much greater 
than the azimuthal curvature, l/r,,. This was noted by Pumir & Siggia (1992), and 
becomes evident if we rewrite (10) and (1 1) in terms of the variables r2 = -rigpT, 
y = r- r,, $ = - $/r,, and (5 = - w,. For y < ro and l/r0 4 a/ay, we obtain 

aa a($,a) - 1 a P  
at  a(z, Y )  at a(z,y) r: ay ' 
-+-= a 7  a($,F) 0; 

while the corresponding equations for swirling flow are 

where $* = $/ro. Reversing y and z in either set of equations gives the desired result. 
Thus the qualitative analogy between swirl and buoyancy becomes exact in cases where 
azimuthal curvature is relatively small. The same is also true, in cases where CL = v, of 
the diffusive equations (3), (4), (6) and (7). 

This similarity in structure has important consequences for both steady and 
unsteady flows. For example, it is well known that (8) and (9) admit two classes of 
steady solution (Batchelor 1967). The first is the degenerate case r = T(r), $ = 0. The 
second comes from rewriting the steady-state version of (9) in the form 

from which r = rw, 
VZ, $ = - rr'($) + H'($) r2. 

Here His an arbitrary function of +. Given H ( ~ )  and r($), we may solve this equation 
for $. It is readily verified that the equivalent steady-state, buoyancy-driven flows are 
of the form 

T =  T($), 
VZ, $ = - gpT'($) zr2 + If'(+) r2, 

where, once again, His  an arbitrary function. This class of solution is, perhaps, less well 
known. We can even combine the results above, so that, in the presence of both swirl 
and buoyancy, the streamfunction satisfies 

VZ, @ = - gpT'($) zr2 - W'($) + H'($) 1'. 
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The similarity also carries over into unsteady flows. For unsteady, swirling flow, 
Davidson (1989) showed that there is a class of integral invariants of the motion. These 
are associated with any material volume, V,, which is bounded by the toroidal surface, 
r = constant. The existence of the invariants can be most readily demonstrated by 
rearranging (8) and (9) in the form 

where g and f are arbitrary functions of r. Integrating this over V,, invoking the 
divergence theorem, and noting that the integral on the right-hand side is constant over 
the surface, we find invariant integrals of the form 

The simplest of these integrals is the ‘signature function’, VAT). The equivalent result 
for diffusionless, buoyancy-driven flow is 

where VT is any material volume bounded by an isothermal surface. Clearly, although 
the analogy is not exact, there is a substantial similarity in the structure of swirling and 
buoyant flows. 

Although we are interested, primarily, in steady flows, we may best illustrate this 
structural similarity with reference to some well-known unsteady flows. There are (at 
least) two striking analogies which are established in the literature, and we will touch 
briefly on each of them. These are vortex rings and internal waves. The second of these 
will prove to be important in our discussion of inviscid steady states in $7. 

3. Review of analogous swirling and buoyancy-driven flows 
Two of the most striking phenomena associated with unsteady buoyant flows are : 

(a)  the formation of thermal plumes from isolated sources ; and (b) the propagation of 
internal gravity waves in a stratified fluid. The arguments of 42 suggest that 
corresponding swirling flows should exist, and this is indeed known to be the case. We 
shall review these flows briefly, largely to emphasize the links established in 92. 
However, these examples also serve to illustrate the mechanisms by which vorticity is 
generated and propagated within swirling and buoyant flows. These mechanisms are 
essentially the same for each, and it is this similarity which underpins the more general 
links between the two subjects. We start with thermal plumes. 

Suppose we release a spherical blob of light fluid in an otherwise quiescent, heavy 
liquid. The blob will, of course, rise. However, after a short time its shape evolves into 
a mushroom-like structure, with a well-defined cap and an indented base. This 
structure is illustrated by the impulsively generated thermal plumes shown in Turner 
(1973) and Van Dyke (1982). Pumir & Siggia (1992) used the qualitative analogy 
between swirl and buoyancy to argue that a localized ring of swirl will behave in a 
similar way, organizing itself into a form of thermal plume. A finite-difference 
computation of an inviscid, axisymmetric flow supported this assertion. In fact, such 
flows have been realized in the laboratory by, for example, the Japan Society of 
Mechanical Engineers (1988). If a cylinder is impulsively rotated in a quiescent fluid, 
an unstable swirling boundary layer builds up on its outer surface. Ring-shaped 
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Axis 

v1 - < o  Induced dipole field aZ 
Initial state 

Advected shape 
t > O  

t = O  .. 
FIGURE 1. Swirling vortex ring. (a) A hoop of swirling fluid is released at t = 0. The hoop centrifuges 
itself radially outward, developing the mushroom-like structure of a thermal plume. (The contours 
are of constant angular momentum.) (b)  Mechanism of propagation. Above the plane z = 0 we have 
W/az  > 0, and so we is positive. Below the plane z = 0 we have W/az < 0, and so og is negative. The 
resulting dipole field propagates the ring radially outward. 

vortices of swirling fluid are shed from this boundary layer, and these propagate 
radially outward with the characteristic mushroom-like structure of a thermal plume. 

Pumir & Siggia were, however, less concerned with the overall structure of these 
rings than with the details of the propagating front. Their aim was to show that, if the 
flow is inviscid, a singularity in vorticity develops at the front within a finite time. 
Indeed, they exploited the analogy with buoyancy, which becomes exact once a 
singularity starts to evolve, to replace the axisymmetric Euler equations at the front by 
the two-dimensional Boussinesq equations, the latter being simpler to compute. 

An example of such a swirling vortex ring is shown in figure l(a), where the 
contours correspond to lines of constant angular momentum. The initial condition 
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consisted of up = 0 and of rconfined to a circular hoop, and we have computed the 
subsequent evolution of the ring using a spectral-based code. We can interpret the 
development of the mushroom-like structure with the aid of (8) and (9), in conjunction 
with figure 1 (b). At t = 0, the cross-section of the hoop consists of concentric circular 
r-lines. The initial axial gradients in r give rise, via (9), to a dipole field, up,  as shown. 
This then advects the hoop radially outward. However, the key to explaining the 
change in shape of the ring lies in the time derivative in (9). This ensures that the 
magnitude of w o / r  always lags behind the distribution of r which caused it. Thus, while 
the dipole field up is still growing, the hoop edges radially outward, so that the inner 
radius of the vortex ring experiences a greater velocity than the outer radius, and the 
inside surface of the hoop becomes indented. In addition, the straining motion at the 
front of the hoop flattens its outer surface and increases the local radial gradient in r. 

Pumir & Siggia were concerned particularly with the growth of vorticity near the 
front. However, it is also possible to calculate the global rise in wo, and use this to 
estimate the rate of propagation of the hoop. Let K be the volume integral of wo/r  in 
the top half of the hoop, then, from (9), 

where ri is the inner hoop radius, r ,  is the outer hoop radius, and r, is the angular 
momentum distribution along the r-axis. Now we know that a pair of two-dimensional 
point vortices, + K and - K ,  separated by a distance d, propagate at the constant speed 
of ~/27cd .  Consequently, if we ignore azimuthal curvature, the expression above gives 
an estimate of the radial acceleration of the hoop. Of course, this expression remains 
valid only for as long as viscosity can be ignored. One striking feature of this inviscid 
analysis is that the strength of the azimuthal vorticity, K ,  increases monotonically. This 
is one manifestation of the fact that kinetic energy is continuously transferred from the 
swirling flow to the recirculation, at the rate 

We may apply the same analysis, with little modification, to our rising blob of hot 
fluid. Suppose that the blob is initially spherical, and has a uniform temperature T 
(relative to the ambient). Let a and u be small so that we may (initially) neglect 
diffusion. If K is the volume integral of wo/r  for the blob, (1 1) gives us 

Here I is the instantaneous height of the blob. As before, vorticity and kinetic energy 
increase monotonically, convecting the hot fluid upwards. 

This simple example illustrates the proposition that, for a given buoyancy-driven 
flow, we are often able to construct an analogous swirling flow (and vice versa). The 
common link is the manner in which vorticity, wo, is generated and propagated. 
Moreover, this correspondence is not limited to diffusionless flows, as illustrated by the 
exact analogy between an Ekman layer and the buoyancy layers generated on an 
inclined plate immersed in a stratified ( u  = a) fluid (see Turner 1973). However, 
perhaps the best known and most striking example of the analogy is inviscid, internal 
wave motion. We will touch on this topic, partially because it plays an important role 
in $7, and partially because it leads naturally to a discussion of minimum energy states. 
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(4 

Propagation 
of disturbance 

FIGURE 2. Propagation of a disturbance in a swirling flow, The induced recirculation propagates the 
disturbance along the r-line. This is an inertial wave. (a) Box flow, (b)  generation of vorticity, (c)  
wave propagation. 

The fact that stratified fluids can support internal gravity waves suggests that a 
swirling flow should also support internal waves. These are, of course, inertial waves. 
Consider a steady (base) flow, in which T = &(r), up = 0, and Ti(r) > 0. Suppose that, 
at t = 0, we locally perturb this base flow by a virtual displacement, q, as shown in 
figure 2(a) .  The resulting gradients in r give rise, via (9), to a recirculation as shown 
in figure 2(c). This causes the amplitude of the initial disturbance to diminish, while the 
disturbance itself propagates out along the T-line. However, if it were not for the time 
derivative on the left-hand side of (9), the disturbance would decay without oscillation. 
This time derivative ensures that the magnitude of wo will lag behind that of aT/az.  
Consequently, the diminishing amplitude of the disturbance will overshoot, flexing the 
r-line in the opposite direction. The net result is a wave motion, propagating energy 
out along the r-line. 

The analogous gravity wave is considerably more familiar. The mechanism of wave 
propagation is precisely as before, with isotherms replacing T-lines, and r and z 
reversing roles. The equivalent base state is a quiescent, stratified fluid T = T,(z). 
(Stability requires Ti(z) < 0.) 

For each of these waves, the governing equation for small-amplitude disturbances 
may be found by linearizing (8)-(11) about their base states. In swirling flows, for 
example, the well-known linearized equation is 

where @ is Rayleigh's discriminant (the square of the limiting wave frequency) 

1 d P  
@(r) = -2 

r3 dr 

To obtain the equivalent equation for gravity waves, we exchange the gradients in r and 
z ,  and replace @; by the Vaisala-Brunt frequency, N,  defined by, N 2  = -g/3Th(z). Of 
course, as Rayleigh noted, @ and N 2  play analogous roles in determining the stability 
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of the two systems (see Drazin & Reid 1981 and Vladimirov 1985). In fact, 0 is a direct 
measure of the increase in the kinetic energy of a swirling flow when two elements of 
the fluid at different radii are exchanged, while N 2  is a measure of the increase in the 
potential energy of a stratified fluid when fluid elements at different elevations are 
exchanged. This analogy has been the basis of attempts to relate changes in the 
structure of turbulence induced by density stratification to changes induced by 
streamline curvature (see Townsend 1976). We will return to (12) during our discussion 
of inviscid steady states. 

The ability of the stratified flows T,(r) and &(z) to dispatch disturbances to the far 
field gives them a certain robustness. This stability is a manifestation of the fact that 
these base flows represent minimum-energy states. To illustrate this, consider an 
inviscid unsteady swirling recirculating flow. It is shown in the Appendix that, if we 
divide the total kinetic energy into azimuthal and poloidal components, EH and E,, 
then Eo is bounded from below by 

Moreover, the flow uH = Qr, where 52 is independent of position, represents an absolute 
minimum in E,, while the flow u, = Q(r) r, represents a local minimum in E,, provided 
Rayleigh’s discriminant is positive. (This lower bound on EH will prove to be important 
in our discussion of inviscid steady states.) These results have an obvious counterpart 
in buoyant fluids, corresponding to stratification of T. 

Intuitively, one would expect these minimum-energy states to play a central role in 
steady-state solutions of the equations of motion. We shall see that this is indeed the 
case. We start by addressing the problem of steady flows with a small but finite 
viscosity. Later, we look at inviscid steady states. In both cases, we are interested in 
contained flows, where the streamlines are closed. 

4. Steady-state solutions for a small but finite viscosity 
We start our discussion of high-Reynolds-number flows by looking at a swirling 

fluid. There are at least two ways in which viscosity can influence a swirling flow. One 
occurs when there is swirl on the boundary, and the other arises from internal diffusion. 
Consider first the case where r = G(r) .  Then von Karman boundary layers will form 
on all the surfaces that are not parallel to z.  These boundary layers will entrain or 
detrain mass from the core flow, and eventually, all of the fluid will be flushed through 
the boundary layers. In this way, the entire flow field will feel the effects of viscosity 
over a timescale of l /(vQ)i.  In fact, the form of the steady state in many geometries is 
dictated by this Ekman pumping. 

Now consider the case where there are no Ekman layers. If the flow has closed 
streamlines, then Batchelor diffusion will occur between the streamlines. This is evident 
from (3) and (4). No matter how small we make v ,  the flow will only achieve a truly 
steady state when diffusion between streamlines is complete. In short, a finite viscosity 
ensures f is uniform in closed-streamline regions outside the boundary layers. 
Equation (4) then ensures that w H / r  is also uniform in these regions (see Batchelor 
1956). The equivalent result for buoyancy-driven flow is that T and w H / r  are both 
uniform. Clearly, viscosity plays a key role, diffusing gradients on a timescale of l z / v .  

Now, suppose that we have an axisymmetric container, of maximum radius R and 
depth 1. Let the lid rotate at a speed Qr, as shown in figure 3(a). If the fluid has some 
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FIGURE 3. (a)  Swirling flow in an axisymmetric container. The lid of the container rotates at  angular 
velocity 0. (b)  Buoyancy flow in an axisymmetric container. The lid of the container is held at 
temperature T,, and the sidewall at temperature T = 0. 

initial velocity, it will approach steady state through a combination of damped inertial 
waves, operating on a timescale of Q-l, Ekman pumping, operating on a timescale of 
l / (vQ)i ,  and Batchelor diffusion, operating on a timescale of 1 2 / v .  

Now intuitively, one would expect the magnitude of the recirculation in the steady 
state to be controlled by Ekman pumping. If this is so, then (up(  + uo, and (9) demands 
that r is independent of z (to the appropriate order). This is reminiscent of the 
Taylor-Proudman theorem. Although substantially correct, the problem with this 
argument is that we do not know, a priori, whether Ekman pumping does indeed 
control the recirculation. There could, in principle, be other forms of steady state, such 
as Batchelor-like flows. Moreover, we wish to extend our results to buoyant fluids, 
where there are no Ekman layers. Clearly, a more formal approach is needed. 

We shall examine the different possibilities using a conservation-of-energy argument 
similar to that of Batchelor (1956). The picture which emerges is one of stratification 
of I', with possible Batchelor-like subdomains embedded in the flow field. In addition, 
all of the vorticity, wo, is located at the boundaries. The links between rotating and 
buoyant fluids suggest that an equivalent class of steady states exist where T is 
stratified, and this does indeed turn out to be the case. We start, however, with swirling 
flows. For simplicity, we shall restrict ourselves to laminar flow, although the 
arguments are essentially the same when the flow is turbulent. 

Let us apply (3) and (4) to the final steady state. If we integrate the Navier-Stokes 
equation along a closed streamline, S, then we obtain 

fs $dr+v$sVzu,.dx = 0. (15) 

This states that, on completing a trajectory in the ( r ,  z)-plane, the poloidal kinetic 
energy which is gained by a fluid particle through the action of the centripetal 
acceleration must be diffused or dissipated out of that particle by shear. In view of the 
smallness of u, there are four ways that we can satisfy this equation. These are: 

(a)  up scales as u- l ;  
(b) r i s  constant along the streamline, to order u ;  
(c) the streamline passes through a boundary layer, or some other singular region, 

where gradients in up scale as d ;  
(d)  r is independent of z ,  to order v. 
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to be much larger than 
Ep at t = 0, despite the fact that the approach to steady state would be dissipative. 
Option (b)  is the inviscid steady-state flow r = I'(+). However, we have already seen 
that Batchelor diffusion would reduce such streamlines to sub-domains where r and 
o g / r  are uniform. In general, such a structure will not satisfy all of the boundary 
conditions, although there may be Batchelor regions embedded in a more complex flow 
pattern. If we, for the moment, put aside such regions, we are left with options (c) and 
(d) .  The last of these seems particularly appealing, since it leads to a minimum-energy 
state for the swirl. However, we can show that, Batchelor regions apart, all the 
streamlines must satisfy both (c) and (d) .  We may demonstrate this as follows. 

Suppose that ( d )  holds true, but (c) does not. Then (8) tells us that up = uz(r)2z 
everywhere in the core. It follows that all of the streamlines are brought into contact 
with the boundary, and so (c) must also hold true after all. Alternatively, suppose that 
we take option (c) as our starting point. Let 6 be the boundary-layer thickness. Then 
the recirculating velocity in the von Kirmin layers is of order QR,  and continuity 
requires that the core recirculation is of order of Q6. We can now estimate the 
advection of vorticity, wg, in the core, 

Now, option (a)  can be ruled out as it requires Ep at t + 

Equation (9) then tells us that the axial lengthscale for r is 

and we conclude that condition ( d )  is also satisfied. 
Our conclusion, then, is that, with the exception of Batchelor-like sub-domains, all 

of the streamlines pass through the boundary layers, and in addition, the core angular 
momentum is independent of z. This last statement is reminiscent of the Taylor- 
Proudman theorem (see Greenspan 1968), the existence of which is usually 
established on the a priori assumption of a vanishingly small recirculation. Perhaps the 
most familiar flow field which satisfies all of the characteristics above is Ekman 
pumping between parallel discs rotating at different speeds. 

Let us now turn to the buoyancy-driven flow shown in figure 3(b). The lid of the 
container is held at a temperature TH, and the walls are maintained at a temperature 
T = 0. In the interests of generality, we shall make no particular assumption about the 
size of a. We assume only that v is small. This case has been discussed briefly by 
Davidson (1992), and the arguments are similar to those used above. Given an initial 
state, the flow will evolve towards a steady state through a combination of internal 
waves, entraining boundary layers, and internal diffusion. 

As before, we start our analysis by integrating the steady-state poloidal equation ( 5 )  
around a closed streamline. 

g/3#s Tdz = v#sVzu.dr. (17) 

The smallness of v leaves us with four options: 
(a) u scales as v-l; 
(b)  T is constant along the streamline, to order v ;  
(c) the streamline passes through a boundary layer, or some other singular region, 

( d )  T is stratified and independent of r ,  to order v. 
where gradients scale as vi; 
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As with the swirling flow, we shall dismiss (a) on the grounds that it implies a large 
kinetic energy. Provided CL is small, option (b)  will lead to Batchelor regions of uniform 
T and w g / r ,  which, in general, will occupy some sub-domain of the flow field. The 
remainder of the streamlines must satisfy either (c) or (d). Option (c) implies entraining 
boundary layers, similar to von Karma, layers in a rotating flow, while option ( d )  
represents a minimum-energy state. Not surprisingly, we find that the streamlines 
satisfy both (c) and (d). The arguments are very similar to those used before. To show 
that ( d )  implies (c), we use (10) to evaluate the core velocity: 

(The subscript ' c '  indicates that these are core values of T and uZ. )  This expression 
requires that all of the streamlines pass out of the core and into the boundary layer, 
so that (c )  is satisfied. Note that, in the limit of a +- 0, the core velocity is zero, so that 
the recirculation does not penetrate into the stratified region. 

To show that (c) implies (d), we must again revert to general scaling arguments. Let 
L,  be the axial lengthscale for the core temperature field. Then the boundary-layer 

u,, = aTl(z)/TL(z). (18) 

version of (5) requires 
4 b I L T  - S P G  

(Here, the subscript ' b '  indicates a variable in the boundary layer.) If all the streamlines 
pass through this boundary layer, continuity gives 

This allows us to estimate the transport of vorticity in the core: 
U, ,  - (SIR) (SPG L$. 

With the aid of (1 1) we deduce 

from which we conclude that condition ( d )  is indeed satisfied. 
For buoyancy-driven flow, then, all of the streamlines pass through the boundary 

layer and, in addition, the core is thermally stratified. This is precisely what is seen in 
the high-Prandtl-number experiments of Elder (1965), as well as in the low-Prandtl- 
number experiments of Vives & Perry (1988). 

The idea of a thermally stratified core seems to have come first from Gill (1966) who 
analysed two-dimensional flow in a slot. In his case, the Prandtl number was of order 
one, so that the two-dimensional equivalent of (18) implies that the core flow is 
horizontal. In his analysis, the boundary layers both entrain and detrain in such a way 
that one feeds the other via the core. This is analogous to Ekman pumping between 
parallel discs rotating at different speeds. Unlike the Ekman problem, however, Gill's 
analysis is only approximate, the boundary layers being treated in a somewhat 
simplified manner. 

There is a direct equivalence, then, between thermal stratification and the 
Taylor-Proudman theorem. The general shape of the isotherms and r-lines in 
buoyancy-driven and centrifugal flows are shown in figure 4. Having established the 
generic structure of these steady states, we now look at an approximate means of 
predicting the magnitude of the flow fields. We start, in $ 5 ,  with swirling flow. 
Subsequently, in $6, we tackle buoyancy-driven flow. In each case, we resort to a 
momentum-integral technique for handling the boundary layers. Such an approach 
inevitably carries with it a potential loss of accuracy, so we shall compare our 
predictions with numerical experiments. 
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FIGURE 4. A comparison of the isotherms for thermally induced flow with the constant-angular- 
momentum lines of a swirling flow. 

5. Momentum integral analysis of swirling flow 
In this section we will take the boundary layers to be turbulent, largely because most 

flows encountered in practice are indeed turbulent. We shall use the coordinate system 
shown in figure 5 ,  in addition to r and z ,  we introduce the curvilinear coordinates s and 
n to define a point relative to the sidewall. The normal and tangential vectors are n and 
t ,  and q5 defines the angle of the surface to the horizontal. The surface coordinates are 
denoted ( rs ,  zs). 

If we integrate (3) through the boundary layer on the sidewall, from n = 0 to 6, we 
obtain 

q d& r2 
${rs[[c-l-]u,dn } 2x ds = 2 7  p 0' 

Here T,(r) is the core angular momentum, us is the tangential velocity in the boundary 
layer, 7(, is the wall shear stress, and q is the mass flux in the boundary layer, 

A slightly different formulation is required for the boundary layer under the top 
surface. Here the lid of the container rotates faster than the fluid, at a speed of Or. 
Consequently, the boundary-layer momentum-integral equation for the lid is the same 
as (19), but with the sign of the shear stress reversed: 

d j r [ [ r - l J u r d z  dr 

Here 7; is the surface shear stress on the lid. Following Greenspan (1968), we estimate 
the stresses 7,, and 7;) using the well-known seventh-power-law fit to the law of the wall. 
This fixes the wall shear as 

7 = O.O225pu2(v/u8)~, 

where u is the slip velocity between the core and the wall. In the present context, this 
gives 

and r27; /p  = K2(f22r2 - &)', 
where K~ and K~ are the coefficients 

K~ = 0.0225[vrS/T, d]:, K~ = 0.0225[vr/(Or2 - &) a]+. 
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FIGURE 5 .  Coordinate system. 

Now the coefficients, K~ and K ~ ,  will typically vary as r-i, depending on the rate of 
growth of 6. Since this dependence on r is much less than the dependence of the 
parameters they multiply (that is, r2 - r4), we will make the judicious approximation 
of treating K~ and K~ as constants. 

Next, we consider the recirculation in the core. Since 4 is materially advected, it 
follows that the core velocity is 

u, = uZ(r)&*. 

As a consequence, the mass flux in the top boundary layer, at any particular radius, is 
equal to the mass flux in the bottom boundary layer, at the same radius. Thus, we may 
write q = q(r).  

Finally, it is convenient to introduce the shape coefficients xs and x t ,  defined by 

I 

As is conventional with momentum-integral analysis, we treat xs and xt  as independent 
of s. Their magnitude may be estimated by assuming that the profiles for r and us 
follow the seventh-power-law. For example, in the sidewall boundary layer, we follow 
von Karman (1921) and write, 

which gives xs = $. An equivalent expression for the top boundary layer also gives 
xt  = Q. Equations (19) and (21) now reduce to 

where I'' = Or2. Provided we can evaluate 6, and so find K~ and K ~ ,  we have two 
equations in two unknowns, &(r) and q(r) .  The boundary-layer thickness, 6, is 
determined by the poloidal component of the momentum-integral equation. 

Consider, by way of an example, the case of a cone, with a half-angle of$ - $, Then 
(22) and (23) are satisfied if we take 

& = Ocr2, q / 2 x r  = cr2, 
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FIGURE 6. Finite difference calculation of forced swirl in a cone of half-angle 20". (a) Streamfunction, 
(b) contours of constant us, (c) variation of uo with r for a slice through the cone (z = 0.243 m). 

and these substitutions give us 

Noting that, 

the first of these relationships gives an explicit expression for the core angular velocity, 
SZ,, in the cone: 

For example, consider a cone with a half-angle of 20". Then (24) gives a core angular 
momentum distribution of 

&(r) = 0.17752r2. 

We have computed this flow using a finite difference code. The fluid is water, the height 
of the cone was taken to be 1 m, and the rotation rate of the lid is 10 rad/s. The k-e 
turbulence model was used to estimate the shear stress, with no correction made for the 
influence of swirl on the Reynolds stresses. The results are shown in figure 6.  Figure 
6(a), shows ~, and it is clear that all of the streamlines do indeed pass through the 
boundary layers. Figure 6(b) shows the contours of constant uo. Note that, as 
predicted, uo is virtually independent of z .  Finally, figure 6 (c) shows the radial variation 
in uo for a slice through the cone at z =0.243 m. The theoretical prediction of 
uo = (1.77 rad/s) r is also shown. In view of the rather substantial approximations 
that are associated with the momentum-integral method, this comparison seems 
not unfavourable. 

Let us now consider the analogous buoyancy-driven flow. 
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6. Momentum-integral analysis of buoyancy-driven flows 
If we refer back to figure 4, showing a thermally stratified core, it is clear that there 

will be thermal boundary layers on the sidewalls. A closely related problem has been 
solved by Prandtl (1952). He considered the case of a V-shaped valley, where the air 
temperature in the valley is thermally stratified, but where the temperature of the slopes 
is everywhere lower than that of the ambient air. Away from the slopes, there is no 
motion, as the stratified air is supported by a hydrostatic pressure distribution. Near 
the edges, however, the air temperature adjusts to that of the slopes, and a thermal 
boundary layer develops. Prandtl showed that, within the relatively thin boundary 
layer, jets of high-speed cold air flow down the slopes. These jets then collide at the base 
of the valley, forming a 'river' of air flowing along the valley floor. (In our 
axisymmetric case, of course, this flow is forced to recirculate back through the core.) 
We shall see that these Prandtl boundary layers adopt the role previously played by 
Ekman layers. 

As before, we shall use the coordinate system shown in figure 5.  This time, we shall 
take 4 = at s = 0, so the sidewall is initially vertical. Also, we shall take the upper 
surface temperature to be TH, and the sidewall temperature to be zero. 

Let the thermal boundary-layer thickness be 6". So far, we have not specified the size 
of a. We shall take a to be small, so that S* + R, but not so small that equation (18) 
excludes any flow in the stratified part of the core. Formally, we shall look at the limit 

IJ < a < uR. 

This hierarchy is typical of the flow of liquid metals, where the Reynolds number is 
usually large, but the Prandtl number is small. One consequence of this restriction is 
that the thermal boundary layer is much thicker than the momentum boundary layer. 
Consequently, the thickness of the jet at the sidewall is dictated by S* rather than 6. 

As before, we introduce the boundary-layer mass flux q, which, from (18), can be 
expressed in terms of the core temperature, T,(z): 

Next, it is useful to define four coefficients, x1 to x4, which depend on the shape of the 
velocity and temperature profiles in the thermal boundary layer : 

In accordance with the conventional momentum-integral approach, we treat these 
coefficients as independent of s. We can now write down the momentum-integral 
equations for the sidewall, obtained from integrating ( 5 )  and (6) through the thermal 
boundary layer. These are given in Davidson (1992) as 
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Now, in the early stages of development of the wall jet, the momentum boundary layer 
will be much thinner than the thermal boundary layer. Consequently, we may neglect 
T~ in the equations above, provided we restrict attention to the initial part of the wall 
jet. (Formally, we are then integrating the equations from n = 6 to S*, rather than from 
n = 0 to S*.) If we now substitute for 4, using (25), we find 

In order to evaluate the constants x1 to x4, we must adopt some ‘shape function’ for 
the velocity and temperature profiles. Since it is not obvious what these shapes should 
be, we shall evaluate x i  for the boundary layer near s = 0. At this point, the problem 
looks locally like that of a cold, vertical plate immersed in a fluid of uniform 
temperature, TH. (We ignore the vertical gradient in T,.) The governing equations are 
then 

As with Pohlhausen’s classic solution for a viscous wall jet (see Turner 1973), we can 
extract an exact solution by scaling S* and u, as S* - sa and us - s;. In particular, we 
write 

Our partial differential equations then reduce to, 

These are readily integrated subject to the boundary conditions: f(0) = 0, f (m) = 1, 
h(0) = 0, and h‘( co) = 0. We see immediately from these boundary conditions that the 

2h’(7)‘ - 3hh”(7) = 1 -f, f”(7) + 3hf’(7) = 0. ( 2 8 4  6 )  

velocity at the wall is 
~ ~ ( 0 )  = (2g/lT,);~i. 

The numerical solution of these equations is reported in Schlichting (1979). For our 
purposes, a good approximation to this solution is given by 

1 
h’(77) = ~ exp (- 1.4567), 

4 2  
where f is then found from (28 a). It follows that 

x1 = 2.13, xz = 2.13, x 3  = 0.294, x4 =A. 
The next step is to recast (26) and (27) in dimensionless form. Let us introduce a 
modified Grashof number, based on CL rather than v :  

Gr* = g,8R3TH/a2. (29) 

Typically, in a liquid-metal flow, this is of the order of 105-107. Inspection of (26) and 
(27) shows that the characteristic axial lengthscale in the stratified region is 

L,  = (Gr*)-;R. 

It follows that the boundary-layer velocity, core velocity, and boundary-layer thickness 
each scale as 

ub - (ol/R)(Gr*)G, u, - (u /R)(Gr*) f ,  S* - R(Gr*)-$. 
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FIGURE 7. Momentum-integral predictions of temperature, 8, and boundary-layer thickness, A ,  for 
buoyancy-driven flow. 

x = Z / L T  

Consequently, it is useful to introduce the scaled variables, 
x = z/L,, 0(x) = T,(z)/T,, A(x)  = 6*R/L& 

Additionally, since L,  < R,  we can put q5 = $n and r, = R in our boundary-layer 
equations. In other words, the stratified region is confined to the top of the flow field, 
the rest of the core being a Batchelor region at T = 0, where our equations are no 
longer valid. The simplified boundary-layer equations are then 

L{L(7} dx A 0' = 0.55384, 

d(0'-E7] 7 e e  = 4.25-, 0 
dx A 

which may be integrated subject to the boundary conditions: 0(0) = 1,0(co) = 0,  
A(0) = 0. The initial solution, which satisfies 0(0) = 1 and d(0) = 0, is 

The unknown constant, 0'(0), is determined by the boundary condition at x = 00. The 
solutions for A and 0 over the whole range are shown in figure 7 .  The depth of the 
stratified region, taken to be the point where 0 falls to 0.02, is predicted to be 

L, = 2.29R(Gr*)-$, 

0 ( ~ )  = 1 +0'( 0 ) ( ~ - 0 . 5 2 8 ~ ~ +  ...), A(x)  = 3 . 8 2 ~ : +  .... 

and the peak boundary-layer mass flux is predicted to be 

4 = 1.78xRa(Gr*)f. 

In order to test the validity of these predictions, we have computed the buoyancy- 
driven flow in a cylinder. We used the same finite-difference code discussed in § 5 .  The 
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FIGURE 8. Buoyancy-driven flow in a cylinder with the top surface at T, = 100 "C: 
(a) isotherms, (b)  streamfunction. 

liquid properties were taken as, p = 2380 kg/m3, /3 = m/s, 
and v = 5.46 x lo-' m2/s. The cylinder was given a radius and height of 0.3 m. Two 
cases were examined: T, = 50 "C and 100 "C. The isotherms and streamfunction for 
the case where TH = 100 "C are shown in figure 8. As expected, we have a quiescent, 
thermally stratified fluid in the upper part of the cylinder, a Batchelor region below, 
and pronounced wall jets on the sidewalls. The depth of the stratified region is 
computed to be 0.1 15 m for the case where TH = 50 "C, and 0.104 m for TH = 100 "C. 
The ratio of these two depths, which is indicative of the scaling of L, on T,, is 0.904. 
Our approximate theory predicts L, to be 0.103 m and 0.093 m respectively, 
corresponding to a ratio of depths of 0.906. The two predictions of L, seem to be 
reasonably in accord, with a maximum discrepancy of 11 YO. The peak boundary-layer 
mass flux for the two cases are computed to be 5.69 x lop4 m3/s and 6.56 x m"/s 
(ratio = 1.19, whereas our theoretical model predicts 5.22 x lop4 m3/s and 
5.77 x m3/s (ratio = 1.1 1). Our analysis appears to underestimate the maximum 
mass flux by - 12 YO. This may be due to our assumed shape function for the wall jet. 
Nevertheless, there is a reasonably good match between the theoretical model and the 
computations. 

K-l, a = 4.67 x 

7. Steady-state solutions of the inviscid equations of motion 
It is clear from the preceding sections that a finite viscosity, no matter how small, has 

profound implications for the structure of closed-streamline steady-state flows. 
Nevertheless, for completeness. we conclude this paper by examining steady-state 
solutions of the inviscid equations. It is likely that these flows, for the most part, are 
unstable. Moreover, it is by no means clear just how such a flow could be initiated. 
However, any stable solution which does exist could, in principle, persist in a real fluid 
for a short period, before (Batchelor) diffusion alters its structure. Such flows, if they 
exist, would be of interest in their own right. We start with swirling flows. 

As noted in $2, equations (8) and (9) admit two classes of steady solution. The first 
is the degenerate case r = T(r), $ = 0. The second is 

r = r(lC.1, (32) 
(33) we/r = rr'(?+h)/r2 - H'(?+h). 
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It turns out that H i s  Bernoulli’s constant. Solutions of (32) and (33) are readily found 
when all of the streamlines originate at z = - co. In such a case, r and H can be 
specified at some upstream location. 

When the streamlines are closed, however, the situation is far less simple. Only a few 
solutions are known. Moffatt (1969) has found one solution of the form r = a$. This 
is a generalization of Hill’s spherical vortex. The vorticity and swirl are confined to a 
sphere which itself sits in a transverse, irrotational flow. Interestingly, the external flow 
over the sphere may be set to zero by the appropriate choice of a. In a later paper, 
Moffatt (1988) used the device of magnetic relaxation to establish the existence of a 
more general set of solutions of (32) and (33), also consisting of a localized blob of 
vorticity and swirl. Finally, Davidson (1989) noted a solution for flow enclosed in 
a cylinder. Again, the solution has the form, r = a$, and is a Beltrami flow with 
w = au. 

Unfortunately, we do not know whether any of the solutions described above are 
stable. (By stable, we mean stable with respect to axisymmetric disturbances.) 
Certainly, they all contain regions where T’(r) < 0, suggesting the potential for a 
Rayleigh instability. The question of stability is perhaps best addressed through the 
method developed by Vallis et al. (1988), which relies on Arnol’d’s stability theorems. 
(See Drazin & Reid 1981 for an account of Arnol’d’s theorems.) 

To establish stability of an inviscid steady state, Arnol’d advected the vorticity field 
using a virtual displacement, q(x) ,  with V. q = 0, and q ds = 0 at the boundary. He then 
showed that, since u is a steady state, the kinetic energy of the flow has a stationary 
value, SIE = 0. Moreover, the flow is stable only if this stationary value is either a 
maximum or a minimum. That is, stability requires S2E to be of definite sign for all 
possible displacement fields q. Building on the work of Moffatt (1986), Vallis et al. 
adapted Arnol’d’s analysis in the following way. They introduced a form of ‘modified 

(34) 
dynamics ’, described by 

a = u + h  C?U/L?t. (35) 

aw/at = v x (a  x w ) ,  

Here we may think of as a continuously evolving form of Arnol’d’s displacement field 
which is functionally related to the instantaneous velocity, u. These equations have 
three important properties. Firstly, the vorticity is smoothly advected by a.  It follows 
that all the normal invariants of the vorticity field, such as circulation and helicity, are 
conserved. Secondly, the energy of the flow field monotonically increases or decreases, 
depending on the sign of A. In fact, if we take the product of 6 with the ‘uncurled’ form 
of (34), we may show that 

Thirdly, the change in energy ceases only when the flow reaches a steady state, and in 
this case (34) and (35) revert to the conventional Euler equations. 

Given an initial condition, the scheme will produce either E = 0, E-t cc or E+ E,, 
where E, is finite. In the latter case, E, will be either a local maximum or minimum in 
energy, depending on the sign of A.  If the modified dynamics do settle on such a state, 
then Arnol’d’s theorem tells us this is a stable steady solution of the Euler equations. 

Vallis et al. used this technique to good effect in two-dimensional flows, where a non- 
trivial (finite E )  solution is guaranteed when h < 0. This is because, in two dimensions, 
the kinetic energy is bounded from above when the integral of the vorticity is 
conserved. 
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This scheme could be applied to swirling flow as it stands. However, it may be 

(36) 
simplified somewhat if we write 

instead of (35). Equation' (34) then gives, 

ti = u + A a q a t  

D r p t  = 0, (37) 

E(t)  = - A  (au,/at)2ddV. (39) J v  and 

Here D/Dt  is the convective derivative based on the advecting velocity ti. A 
comparison with (8) and (9) shows that the modified transport equations above have 
precisely the same form as the originals, but with a convective derivative based on ti, 
rather than u. As before, angular momentum is materially conserved, so that T d  V is 
constant. (This is not surprising, as r is the streamfunction for o,.) It follows 
immediately that we may apply (14) to our modified flow, and so impose a lower bound 
on E. Consequently, provided we take h > 0, any initial flow is guaranteed to evolve 
to a stable, steady solution of the Euler equations. (In practice, of course, singularities 
such as vortex sheets may well develop.) 

Curiously, these steady states correspond to a local minimum in energy, whereas the 
two-dimensional flows computed by Vallis et al. correspond to local maxima. In fact, 
in two dimensions, E is bounded from above, by conservation of global vorticity, but 
not necessarily from below. (As Vallis et al. 1989 shows, Kelvin's 'vortex sponge' 
allows E to tend to zero, while preserving global vorticity.) Conversely, in axisymmetric, 
swirling flow, E is bounded from below, but not from above. (We can produce an 
infinite kinetic energy by pulling a fluid element with finite r to the axis.) 

We can gain some small insight into the mechanics of the modified dynamics by 
considering a very simple case. Suppose that, at t = 0, we have a velocity field given by 

r= Q r 2 + S r ,  up = 0. 

Then, at least initially, we may linearize (37) and (38) to give 

Comparing (40) with (12) shows that we have a slightly modified inertial wave. If we 
restrict the flow to a cylinder of radius R, then this equation supports progressive waves 
of the form $ = y+o rJ,(6, r / R )  exp (st - ikx), 

where 8, is the nth zero of 4. The dispersion equation is readily shown to be 
s = -'hu2+. 2 0 - J {  u 2 -  0 (2h4)2P. 1 

Clearly, the modified dynamics produces damped waves (for h > 0), so that energy is 
continually extracted from the flow field until ST = 0. For a large enough value of A, 
the waves are critically damped. 

Now, we already know from the general form of (34) that helicity must be conserved 
by the modified dynamics. That is, 

13 FLM 252 
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where V, is any material volume bounded by the toroidal surface r = constant. It is 
natural to ask if there are other integral invariants of the flow when the r-lines are 
closed. That this is indeed the case follows directly from (37) and (38). These can be 
rearranged to give 

where g andfare arbitrary functions of r. Following the procedure outlined in 52, we 
find 

Consequently, we can ensure that all of the integral characteristics of the form 

are carried over from the initial velocity field to the final steady state. This includes the 
signature function, VAr). We might be tempted to speculate, therefore, that a variety 
of stable steady solutions of the inviscid equations of motion do exist, and that (41) 
ensures that they have a non-trivial topology. However, we shall see, through the 
analogy with buoyancy, that this is not the case. In particular, (41) is not sufficient to 
avoid the degenerate case r = T(r). 

Let us construct a similar body of theory to describe buoyancy-driven flows. To 
investigate the stability of such flows, we introduce a scheme where u is replaced by ii 
in (10) and (11). That is, 

DT/Dt = 0, (43) 

ii = u + A a q a t .  (45) 

If the fluid is held in the fixed domain V, then this system of equations ensures that the 
total energy monotonically decreases, while preserving the expected vorticity integrals. 
Specifically, 

and (47) 

where V, is a material volume bounded by an isothermal surface. 
We shall now show that (47) is not a sufficient constraint to avoid degenerate 

(stratified) solutions of the buoyancy equations and that, by implication, (41) cannot 
ensure non-trivial solutions of the swirl equations. To this end, consider a variant of 
Moffatt’s (1985) ‘squeeze-film’ problem. Suppose that we start with a blob of hot fluid, 
surrounded by cold fluid, and all contained in a cylinder of radius R. Let us choose A 
to be small, so that, initially, the flow behaves in a conventional way. The blob will rise, 
hit the roof of the box, and spread horizontally. The cold fluid which was initially 
adjacent to the surface will, in principle, remain there forever, blocking the hot fluid 
from reaching the top of the box. However, the cold fluid will be squeezed out as 
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Singular region 
2T/az+ co 

Hot fluid 

aT/ar + m 
(vortex sheet) 

FIGURE 9. Moffatt’s ‘squeeze-film’ process adapted to modified dynamics. (a) Initial state; (b)  hot 
fluid rises; ( c )  fluid is almost stratified and kinetic energy is lost via damped waves; ( d )  final state is 
purely stratified with a vortex sheet a t  r = R. 

t + m ,  as shown in figure 9. Once the flow approaches stratification, the excess 
kinetic energy which has been gained by the fluid due to the fall in potential energy 
can be eliminated by damped gravity waves, analogous to (40). What we end up with 
then is a perfectly stratified fluid, with singular regions adjacent to the boundary. 
In particular, we might note that a sheet of vorticity, wo, forms on the surface r = R. 

In principle, the same process can occur if we have some initial vorticity, wH, in the 
flow. Equation (47) is satisfied by pushing all of the initial vorticity into the vortex sheet 
at r = R. This configuration not only minimizes the potential energy, but also the total 
kinetic energy which is inevitably associated with a finite integral of wo. (For a given 
net vorticity we can minimize the kinetic energy by pushing the vorticity to the 
boundaries.) 

It seems physically plausible, therefore, that the modified dynamics of Vallis et al. 
results (at least for small A)  in the degenerate, stratified state T =  T(z). We can 
construct a similar argument to suggest that, if h is small, minimizing the energy of a 
swirling flow leads to r = Qr), with all of the vorticity, wo, deposited at the outer radial 
boundary. 

Now the arguments above show that the degenerate states T(z) and T ( r )  are one 
possible result of the modified dynamics. However, they do not prove that the modified 
dynamics always lead to stratification, although this does seem plausible. To help 
resolve this issue, we have attempted some numerical experiments. Unfortunately, in 
each case, the growth of singularities in the flow induced a numerical instability. 
(Whether or not the modified dynamics invariably generate singularities is an 
important issue which we have not addressed here. Certainly, since the Euler equations 
themselves can produce finite-time singularities, it would be surprising if the modified 
dynamics did not.) 

Interestingly, the approach to stratification via modified dynamics may have some 
physical basis. Vallis et al. (1988) have suggested that their modified dynamics mimic, 
in some ways, the large scales in a turbulent flow. The argument is that, in a turbulent 
flow, energy is cascaded away to the small scales faster than the invariants of the 
vorticity field, such as helicity. This leads to coherent, Beltrami-like structures (with 
w = au)  in the large scales. This is, of course, just what their dynamics achieve. In the 
case of swirling or thermally stratified flows, the turbulence energy is, presumably, not 
only cascaded away, but also transported by internal waves. If the turbulence energy 
within these waves is removed to the small scales at a rate faster than the vortical 
invariants, then (37), (38), (43) and (44) may provide a model for the stratification of 

13-2  
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angular momentum and temperature in a turbulent flow. (The constant h would have 
to be chosen such that h = e / @ v  for swirling flow, or h = c / N 2 q  for buoyancy- 
driven flow, where e is the dissipation rate of the turbulent kinetic energy.) 

We conclude, therefore, that the lower bound on energy in swirling flows ensures 
that the modified dynamics of Vallis et al. will converge to an inviscid stable steady 
state of arbitrary net azimuthal vorticity. However, the analogy with buoyancy 
suggests that these are of a degenerate form, corresponding to a stratification of r, with 
a vortex sheet at the boundary. We have been unable to resolve this issue numerically, 
owing to the development of singularities in the flow field. Nevertheless, if the steady 
states are indeed of this degenerate form then, perhaps, the modified dynamics can be 
used to parameterize the stratification of angular momentum and temperature in a 
turbulent flow. 

8. Conclusions 
The analogy between swirling and buoyancy-driven flows arises from the way in 

which vorticity is generated and propagated within each. (The best known ilhstration 
of this is internal wave motion.) For a given buoyancy-driven flow, we are often able 
to construct an analogous swirling flow, as illustrated by the thermal plume structure 
of figure 1. 

The common behaviour of the two flows is reflected in the structure of their steady 
states. For a small but finite viscosity, these steady flows consist of an inviscid quiescent 
stratified core, bounded by high-speed wall jets. (The stratification is of r or T, 
depending on the class of flow.) Batchelor regions apart, all of the streamlines pass 
through both the boundary layers and the core. We may take advantage of this 
structure to construct an approximate model of these flows, in which the wall jets are 
handled using a momentum integral technique, and the core and wall flows are 
matched using continuity of mass. Such models yield reasonable results, accurate to - 10%. 

The stability of inviscid steady-state flows has been investigated using the energy- 
minimization technique of Vallis et al. The lower bound on the energy of a swirling 
flow guarantees that stable steady flows do indeed exist. Moreover, these may contain 
an arbitrary amount of azimuthal vorticity. However, an appeal to the analogous 
buoyancy-driven flows suggests that these are of a degenerate, stratified form. If this 
is so, then perhaps the modified dynamics, which disposes of energy while maintaining 
the vortical invariants, may mimic the evolution towards stratification in a turbulent 
flow. 

The author would like to thank D. Kinnear and Dr C. Marooney for their assistance 
with the computations, and also a referee for bringing to my attention the work of 
Pumir & Siggia. 

Appendix. Minimum-energy states in swirling flow 

fixed volume V. Then the total kinetic energy for the recirculating flow is 
Consider an inviscid unsteady swirling flow. Suppose that the fluid is enclosed in a 

& i d V =  E,+E,. 
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As a flow evolves, energy may be exchanged between EB and E,, but the total must 
remain constant. However, for a given flow, conservation of angular momentum 
imposes a limit on this transfer of energy. Specifically, Schwarz's integral inequality 
requires 

E, 2 { ( f d V r / 2 ( r z d V .  

The right-hand-side of this expression is fixed by the initial conditions, and 
consequently we have a lower bound on EB. The equality holds if, and only if, uB = Qr, 
where Q is independent of r and z. It follows that rigid-body rotation represents the 
absolute minimum-energy state for a flow with a given net angular momentum. This 
was noted by Davidson (1989). A related result was shown by Moffatt (1986). He 
considered the base state f = T,(r) and showed that, for @ > 0, this represents a local 
minimum in E, with respect to a virtual displacement, 7, of the f-lines. In particular, 
he found the second-order perturbation in EB to be 

d2E - - @(r)$dV 4s, 
It follows that, as stated above, T,(r) is a local minimum in E,. Now we know from 
Rayleigh's stability criterion that &(r) must also represent a local minimum in the total 
energy E = EH+ E,, provided @ is positive. In fact, we may show that (Davidson 1989) 

which is consistent with Rayleigh's criteria. 
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